Sony VAIO Logo

The Sony VAIO logo illustrates the integration of analog and digital technology. The VA letters form an analog wave and the IO part represents a binary one and zero.

Principles of Communications ECS 332

Dr. Prapun Suksompong
prapun@siit.tu.ac.th
8. Sampling and Alising

Office Hours:
BKD 3601-7
Monday 14:40-16:00
Friday $\quad 14: 00-16: 00$

Converting Analog Signals to Digital

- The real world is analog!
- Interfacing between analog and digital is important.
- Digitization

1. Sampling (and hold): Discretize the time

- Get sampled values of the analog signal.

2. Quantization: Discretize quantity values

- Convert each sampled value to a binary code.

Digitization (analog to digital)

Sampling $=$ loss of information?

- At first glance, digitization of a continuous signal (audio, image) appears to be an enormous loss of information, because a continuous function is reduced to a function on a grid of points.
- Therefore the crucial question arises as to which criterion we can use to ensure that the sampled points are a valid representation of the continuous signal, i.e., there is no loss of information.

Sampling

- Sampling is the process of taking a (sufficient) number of discrete values of points on a waveform that will define the shape of wave form.
- Suppose that we sample a signal at a uniform rate, once every T_{s} seconds.
- We refer to T_{s} as the sampling period, and to its reciprocal f_{s} $=1 / T_{\mathrm{s}}$ as the sampling rate.
- The more samples you take, the more accurately you can define a waveform.
- Caution: If the sampling rate is too low, your may experience distortion (aliasing).

Example: $\sin (100 \pi t)$

This is the plot of $\sin (100 \pi \mathrm{t})$. What's wrong with it?

[AliasingSin_2.m]

Example: $\sin (100 \pi t)$

Signal of the form $\sin \left(2 \pi f_{0} t\right)$ have frequency $f=f_{0} \mathrm{~Hz}$. So, the frequency of $\sin (100 \pi t)$ is 50 Hz .

From time 0 to 1 , it should have completed 50 cycles. However, our plot has only one cycle.

It looks more like the plot of $\quad \sin (2 \pi t)$

Example: $\sin (100 \pi t)$

Aliasing causes high-frequency signal to be seen as low frequency.

Sampling Theorem

- In order to (correctly and completely) represent an analog signal, the sampling frequency, f_{s}, must be at least twice the highest frequency component of the analog signal.
- Given a sampling frequency, f_{s}, the Nyquist frequency is defined as $f_{s} / 2$.
- Given that highest (positive-)frequency component $f_{\max }$ of the analog signal, the Nyquist sampling rate is $2 f_{\text {max }}$ And the Nyquist sampling interval is $1 /\left(2 f_{\max }\right)$

Example: $\sin (100 \pi t)$

Signal of the form $\sin \left(2 \pi f_{0} t\right)$ have frequency $f=f_{0} \mathrm{~Hz}$. So, the frequency of $\sin (100 \pi t)$ is 50 Hz .

We need to sample at least 100 times per time unit.

Here, the number of sample per time unit is 49 , which is too small to avoid aliasing.

Ex: Aliasing

- If you've ever watched a film and seen the wheel of a rolling wagon appear to be going backwards, you've witnessed aliasing.

plotspec.m

- f_{s} : Sampling frequency $=200$ samples $/ \mathrm{sec}$

plotspec.m

- f_{s} : Sampling frequency $=200$ samples $/ \mathrm{sec}$

plotspec.m

- f_{s} : Sampling frequency $=200$ samples $/$ sec

plotspec.m

- f_{s} : Sampling frequency $=200$ samples $/ \mathrm{sec}$

Pac Man

Another Example

- When sampled at 10 Samples per sec, there is no way to tell the difference between $3 \mathrm{~Hz}, 7 \mathrm{~Hz}$, or the 13 Hz waves below.

Aliasing: One complex exponential

Let's increase f_{0}

Aliasing: One complex exponential

Aliasing: Two complex exponentials

Aliasing: Two complex exponentials

Let's change f_{0} and f_{1}.
For sine wave, $f_{1}=-f_{0}$.

Reconstruction

Practical Reconstruction

